Neuroimaging of direction-selective mechanisms for second-order motion.
نویسندگان
چکیده
Psychophysical findings have revealed a functional segregation of processing for 1st-order motion (movement of luminance modulation) and 2nd-order motion (e.g., movement of contrast modulation). However neural correlates of this psychophysical distinction remain controversial. To test for a corresponding anatomical segregation, we conducted a new functional magnetic resonance imaging (fMRI) study to localize direction-selective cortical mechanisms for 1st- and 2nd-order motion stimuli, by measuring direction-contingent response changes induced by motion adaptation, with deliberate control of attention. The 2nd-order motion stimulus generated direction-selective adaptation in a wide range of visual cortical areas, including areas V1, V2, V3, VP, V3A, V4v, and MT+. Moreover, the pattern of activity was similar to that obtained with 1st-order motion stimuli. Contrary to expectations from psychophysics, these results suggest that in the human visual cortex, the direction of 2nd-order motion is represented as early as V1. In addition, we found no obvious anatomical segregation in the neural substrates for 1st- and 2nd-order motion processing that can be resolved using standard fMRI.
منابع مشابه
Direction-selective patterns of activity in human visual cortex suggest common neural substrates for different types of motion.
A sense of motion can be elicited by the movement of both luminance- and texture-defined patterns, what is commonly referred to as first- and second-order, respectively. Although there are differences in the perception of these two classes of motion stimuli, including differences in temporal and spatial sensitivity, it is debated whether common or separate direction-selective mechanisms are res...
متن کاملFailure of direction identification for briefly presented second-order motion stimuli: evidence for weak direction selectivity of the mechanisms encoding motion
We sought to investigate why the direction of second-order motion, unlike first-order motion, cannot be identified when the stimulus exposure duration is brief (<200 ms). In a series of experiments observers identified both the orientation (vertical or horizontal) and the direction (left, right, down or up) of a drifting sinusoidal modulation (0.93 c/ degrees ) in either the luminance (first or...
متن کاملElectrical neuroimaging during auditory motion aftereffects reveals that auditory motion processing is motion sensitive but not direction selective.
Following prolonged exposure to adaptor sounds moving in a single direction, participants may perceive stationary-probe sounds as moving in the opposite direction [direction-selective auditory motion aftereffect (aMAE)] and be less sensitive to motion of any probe sounds that are actually moving (motion-sensitive aMAE). The neural mechanisms of aMAEs, and notably whether they are due to adaptat...
متن کاملDual multiple-scale processing for motion in the human visual System
A number of psychophysical and physiological studies have suggested that first- and second-order motion signals are processed, at least initially, by independent pathways, and that the two pathways both consist of multiple motion-detecting channels that are each narrowly tuned to a different spatial scale (spatial frequency). However, the precise number and nature of the mechanisms that subserv...
متن کاملIncreasing stimulus size impairs first- but not second-order motion perception.
As stimulus size increases, the direction of high-contrast moving stimuli becomes increasingly difficult to perceive. This counterintuitive effect, termed spatial suppression, is believed to reflect antagonistic center-surround interactions--mechanisms that play key roles in tasks requiring sensitivity to relative motion. It is unknown, however, whether second-order motion also exhibits spatial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 90 5 شماره
صفحات -
تاریخ انتشار 2003